Nanosafety-data-reusability-34-datasets

A Meta-Analysis of Carbon Nanotube Pulmonary Toxicity Studies-How Physical Dimensions and Impurities Affect the Toxicity of Carbon Nanotubes (2013)

Original Study Abstract

This article presents a regression-tree-based meta-analysis of rodent pulmonary toxicity studies of uncoated, nonfunctionalized carbon nanotube (CNT) exposure. The resulting analysis provides quantitative estimates of the contribution of CNT attributes (impurities, physical dimensions, and aggregation) to pulmonary toxicity indicators in bronchoalveolar lavage fluid: neutrophil and macrophage count, and lactate dehydrogenase and total protein concentrations. The method employs classification and regression tree (CART) models, techniques that are relatively insensitive to data defects that impair other types of regression analysis: high dimensionality, nonlinearity, correlated variables, and significant quantities of missing values. Three types of analysis are presented: the RT, the random forest (RF), and a random-forest-based dose-response model. The RT shows the best single model supported by all the data and typically contains a small number of variables. The RF shows how much variance reduction is associated with every variable in the data set. The dose-response model is used to isolate the effects of CNT attributes from the CNT dose, showing the shift in the dose-response caused by the attribute across the measured range of CNT doses. It was found that the CNT attributes that contribute the most to pulmonary toxicity were metallic impurities (cobalt significantly increased observed toxicity, while other impurities had mixed effects), CNT length (negatively correlated with most toxicity indicators), CNT diameter (significantly positively associated with toxicity), and aggregate size (negatively correlated with cell damage indicators and positively correlated with immune response indicators). Increasing CNT N2-BET-specific surface area decreased toxicity indicators.

Data Sample

StudyID Author(s) Year Journal Particle Species Config. (1=SW, 2=MW) Exp. Mode (1=inhalation, 2=instillation, 3=aspiration) animal (1=rats, 2=mice) species (1=sprague-dawley, 2=wistar, 3=C57BL/6, 4=ICR, 5=Crl:CD(SD)IGS BR, 6=BALB/cAnNCrl) mean animal mass, g sex (1=male, 2=female) min length length median, nm max length min dia diameter median, nm max dia MMAD, nm Purity %wt Oxidized C % wt Co % wt Al %wt Fe %wt Cu %wt Cr %wt Ni SA m2/g mass conc. (mg/m3) air conc. SD Exp. Hrs. Exp. Per. (hrs) Total Dose (ug/kg) Avg 24-hr Dose (ug/kg) Total Dose (m2/kg) Avg 24-hr Dose (m2/kg) No. of Subjects (N) Post Exp. (days) Total BAL Cell Counts (x10^6) Total Cell Count SD Macrophages Count (x10^4) Macrophages SD Neutrophils count (x10^4) Neutro. SD LDH (% of control) LDH SD IL-6 (pg/ml) IL-6 SD TNF-a (pg/ml) TNF SD Total Protein (% of control) Protein SD Lymphocytes (count x 10^4) Lymphocytes SD Eosinophils (x10^5 /lung) Eosinophils SD IL-10 (% of control) IL-10 SD Collagen (% of control) Collagen SD Hydroxiproline (ug/lung) Hydroxiproline SD Alkaline Phosphatase (% of control) Alkaline Phosphatase SD BAL Total Cell Count (fold of control) BAL Total Cell Count (fold of control) SD BAL Macrophages (fold of control) BAL Macrophages (fold of control) SD BAL Macrophages (%TCC) BAL Macrophages (%TCC) SD BAL Neutrophils (fold of control) BAL Neutrophils (fold of control) SD BAL Neutrophils (%TCC) BAL Neutrophils (%TCC) SD BAL LDH (fold of control) BAL LDH (fold of control) SD BAL Total Protein (fold of control) BAL Total Protein (fold of control) SD BAL Lymphocytes (fold of control) BAL Lymphocytes (fold of control) SD BAL Lymphocytes (%TCC) BAL Lymphocytes (%TCC) SD BAL Collagen (fold of control) BAL Collagen (fold of control) SD
1 Pauluhn, J. 2010 Tox. Sci. Carbon 2 1 1 2 250 1 70 320 1170 5 9,5 22 1670 98,6 0 0,53 0 0 0 0 0 253 0,1 0,02 390 2184 105,210144 1,156155429 0,026618166 0,000292507 6 1 6 1 500 50 5 1 120 10         135 20 1 1         160 10     180 40 1 0,166666667 1 0,1 0,833333333 0,083333333 1 0,2 0,008333333 0,001666667 1,2 0,1 1,35 0,2 1 1 0,001666667 0,001666667 1,6 0,1
1 Pauluhn, J. 2010 Tox. Sci. Carbon 2 1 1 2 250 1 70 320 1170 5 9,5 22 1910 98,6 0 0,53 0 0 0 0 0 253 0,45 0,06 390 2184 473,445648 5,202699429 0,119781749 0,001316283 6 1 12 1 500 50 50 1 280 50         210 40 5 2         400 50     240 30 2 0,166666667 1 0,1 0,416666667 0,041666667 10 0,2 0,041666667 0,000833333 2,8 0,5 2,1 0,4 5 2 0,004166667 0,001666667 4 0,5
1 Pauluhn, J. 2010 Tox. Sci. Carbon 2 1 1 2 250 1 70 320 1170 5 9,5 22 1930 98,6 0 0,53 0 0 0 0 0 253 1,62 0,2 390 2184 1704,404333 18,72971795 0,431214296 0,004738619 6 1 43 8 1800 400 780 100 580 120         280 30 25 15         800 200     220 20 7,166666667 1,333333333 3,6 0,8 0,418604651 0,093023256 156 20 0,181395349 0,023255814 5,8 1,2 2,8 0,3 25 15 0,005813953 0,003488372 8 2
1 Pauluhn, J. 2010 Tox. Sci. Carbon 2 1 1 2 250 1 70 320 1170 5 9,5 22 2190 98,6 0 0,53 0 0 0 0 0 253 5,98 0,8 390 2184 6291,566611 69,13809463 1,591766353 0,017491938 6 1 119 31 4300 1200 3200 1200 1180 390         530 70 128 60         1650 250     290 90 19,83333333 5,166666667 8,6 2,4 0,361344538 0,100840336 640 240 0,268907563 0,100840336 11,8 3,9 5,3 0,7 128 60 0,010756303 0,005042017 16,5 2,5
1 Pauluhn, J. 2010 Tox. Sci. Carbon 2 1 1 2 250 1 70 320 1170 5 9,5 22 1670 98,6 0 0,53 0 0 0 0 0 253 0,1 0,02 390 2184 105,210144 1,156155429 0,026618166 0,000292507 6 28 6 1 500 50 10 1 100 10         100 5 1 1         100 5     110 10 1 0,166666667 1 0,1 0,833333333 0,083333333 2 0,2 0,016666667 0,001666667 1 0,1 1 0,05 1 1 0,001666667 0,001666667 1 0,05

Data Summary

Group Count
# of Toxicity Endpoints 136
# of Nanomaterial types 1