Nanosafety-data-reusability-34-datasets

Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors (2015)

Original Study Abstract

The use of data mining techniques in the field of nanomedicine has been very limited. In this paper we demonstrate that data mining techniques can be used for the development of predictive models of the cytotoxicity of poly(amido amine) (PAMAM) dendrimers using their chemical and structural properties. We present predictive models developed using 103 PAMAM dendrimer cytotoxicity values that were extracted from twelve cancer nanomedicine journal articles. The results indicate that data mining and machine learning can be effectively used to predict the cytotoxicity of PAMAM dendrimers on Caco-2 cells.

Data Sample

Cytotoxicity_Concentration (mM) Cell_Viability (%) Molecular_Weight Exact_Mass Atom_Count pI logP logD Molecular_Polarizability Refractivity Toxic
1 100 516,6811 516,3860001 84 12,63 -6,45 -18,95 55,28 139,82 No
2 100 516,6811 516,3860001 84 12,63 -6,45 -18,95 55,28 139,82 No
5 100 516,6811 516,3860001 84 12,63 -6,45 -18,95 55,28 139,82 No
10 96 516,6811 516,3860001 84 12,63 -6,45 -18,95 55,28 139,82 No
0,1 98 1429,8467 1429,020504 228 12,47 -16,51 -36,84 150,96 383,72 No

Data Summary

Variable Count (unique values)
Cytotoxicity_Concentration (mM) 34
Cell_Viability (%) 50
Molecular_Weight 10
Exact_Mass 10
Atom_Count 10
pI 10
logP 10
logD 10
Molecular_Polarizability 10
Refractivity 10
Toxic 2